
1

Report of

mAJOR Project Work

on

Product Filteration Using Arduino

Submitted by

 RAHUL KUMAR (22014090022)

VISHAL SINGH (23014092005)

SAKSHI BHATT (22014090028)

ANUJ NEGI(22014090008)

in the partial fulfillment of the requirements for the award of the diploma

in

ELECTRONICS ENGINEERING

 Under the supervision of

Mrs. Seema Rawat (HOD,ELEX. Department)

DEPARTMENT OF

ELECTRONICS ENGINEERING

GOVT. POLYTECHNIC SRINAGAR GARHWAL UTTARAKHAND

 Winter Semester 2024-25

2

CERTIFICATE

This is to certify that the project is a record of the work done by Rahul

Kumar,Vishal Singh,Sakshi Bhatt,Anuj Negi in partial fulfillment of the

requirements for the award of the Diploma in Electronics Engineering of

the Government Polytechnic Srinagar (Garhwal) affiliated to Uttarakhand

Board of Technical Education, (Roorkee). During the year 2024-25,

under the supervision of Mrs. Seema Rawat department of Electronics

Engineering.

Mrs. Seema Rawat

Mrs. Shilpi kannojia

Mr.Prabhakar Singh

Mr.Prashant Dobhal

 Project Viva Held on………………

3

DECLARATION

We hereby declare that this submission is our work and that to the best

of our knowledge and belief, it contains no material previously published

or written by another person nor material which to a substantial extent

has been accepted for the award of any other degree or diploma of the

university or the university or other institute of higher learning, except

where due acknowledgement has been made in the text.

RAHUL KUMAR (22014090022)

VISHAL SINGH (2301902005)

SAKSHI BHATT (22014090028)

ANUJ NEGI(22014090008)

4

ACKNOWLEDGEMENT

The satisfaction that accompanies that the successful completion of any

task would be incomplete without the mention of people whose

ceaseless cooperation made it possible, whose constant guidance and

encouragement crowns all efforts with success. We are grateful to our

All faculties with project guide Mrs.Seema Rawat for the guidance,

inspiration and constructive suggestions that helpful us in the

preparation of this project.

I also thank my colleagues who have helped me in successful

completion of the project.

5

ABSTRACTION

The student management system, a digital guardian of information,

stands as a central hub for streamlining the academic journey. It

abstracts away the burden of paperwork and manual processes,

transforming data into a well-organized tapestry. At its core, it holds

student details, weaving intricate threads of courses, grades, and

attendance. Teachers find solace in streamlined lesson planning and

grade recording, while students navigate their academic path with ease,

accessing resources and monitoring progress. Communication flourishes

under its watchful gaze, connecting parents, teachers, and

administrators in a seamless flow of updates and announcements. This

digital tapestry, meticulously woven, becomes an abstraction of

academic life, offering efficiency, organization, and accessibility at every

thread

6

TABLE OF CONTENT

S.NO. CONTANT PAGE NO.

1. CERTIFICATE

2. DECLARATION

3. ACKNOWLEDGEMENT

4. ABSTRACTION

5. INTRODUCTION AND USE OF PROJECT IN
INDUSTRY OR IN SOCITY

6. COMPONENT DETAILS

7. DESIGN OF CIRCUIT

8. TESTING AND TROUBLESHOOTING OF
CIRCUIT

9. ESTIMATION

10. REFERENCES

7

INTRODUCTION AND USE OF PROJECT IN INDUSTRY OR
IN SOCITY:

The use of color-based product filtration with Arduino in industrial applications

combines cost-effective hardware and automation to filter or sort items based

on color. This project leverages Arduino boards, color sensors, and actuators

to create a scalable, efficient, and customizable solution for industries

requiring sorting or quality control based on color attributes.

Below are some key industrial applications:

 Food and Agriculture Industry

 Recycling and Waste Management

 Textile and Apparel Industry

 Pharmaceutical Industry

 Automotive Industry

 Packaging Industry

Core Components for Arduino-Based Projects:

1. Arduino Board: Acts as the central controller (e.g., Arduino Uno or

Mega).

2. Color Sensor: TCS34725, TCS230, TCS3200, APDS-9960, or similar

sensors detect object colors.

3. Actuators: Servo motors, DC gear motors, stepper motors, or

pneumatic arms to sort items.

4. Conveyor System: Moves products past the sensor.

5. LCD with I2C Protocol: Displays real-time product counts and system

status.

6. HM-10 BLE Module: Provides wireless communication for sending start

pulses to the pallet carrier system.

7. Power Supply: Provides energy to Arduino and actuators.

8. Software: Arduino IDE and libraries for programming and calibration.

8

Workflow:

1. Detection: The object passes under the color sensor.

2. Processing: Arduino interprets color data and matches it to predefined

criteria.

3. Action: Based on the color match, actuators sort the object into the

appropriate bin or area.

4. Counting and Display: The LCD module shows the count of products

sorted for easy monitoring.

5. Communication and Transport: The HM-10 BLE module sends a start

pulse signal to the pallet carrier, which then picks the sorted product

and places it in its designated space.

Benefits in Industry:

 Cost-Effectiveness: Arduino-based systems are affordable and

scalable.

 Customization: Easy to program and adapt for specific needs.

 Automation: Reduces manual labor and increases throughput.

 Accuracy: Consistently identifies and sorts based on predefined color

parameters.

 Real-Time Monitoring: LCD with I2C ensures that product counts and

system performance are easily visible.

 Wireless Operation: BLE communication minimizes wiring complexity

and improves system flexibility.

9

10

COMPONENT DETAILS

1).Arduino Mega 2560 :

Arduino Mega 2560 is a development electronic board based on the

Atmega2560 microcontroller.

This board is a good match for projects that require more GPIO pins and

memory space because it carries 16 analog pins and 54 digital I/O pins out of

which 15 pins are used for PWM output.

The board comes with a DC power jack to power up this unit and you can also

turn on the board using VIN pin on the board. The unit also supports a USB

interface where a USB cable is used to connect the board with the computer.

The unit also supports the ICSP header which is used to program the board

without disconnecting it from the main circuitry.

Two voltage regulators are included on the board through which you can

regulate the voltage as you like better.

Arduino Mega 2560 is programmed using Arduino IDE (Integrated

Development Environment) software that is the official software introduced by

Arduino.cc

The ATmega2560 controller on the board comes with 256 KB of flash memory

used for storing code (out of which 8 KB is used for the Bootloader), while the

SRAM is 8 KB of SRAM and EEPROM is 4 KB of EEPROM.

11

Specification of ArduIno Mega 2560:

Arduino Mega 2560 Pin Description:

In this section, we’ll cover the pin description of each pin incorporated on the

board.

Digital I/O Pins: There are total of 54 digital I/O pins available on the board

which can be used to connect the board with external components.

PWM: 15 pins are used for PWM which is a process used to control the speed

of the motor or brightness of the LED.

12

LED: This is the built-in LED connected to pin 13. When 5V is provided to this

pin, it will turn ON the LED while ground or zero V will turn it OFF.

Analogue Pins: There are 16 analogue pins incorporated on the board

marked as A0 to A15. These pins can measure voltage from ground to 5V and

each pin is a 10-bit resolution pin.

GND: This board carries 5 ground pins which are used for projects where

more than one ground is required.

External Interrupts: Six pins are reserved for generating external interrupts.

Those are pin number 0, 3, 18, 19, 20 & 21.

Reset: This is the reset pin of the board. This pin is useful when your code

gets stuck in the middle of the running program, pressing this pin will reset the

code compiled into the board.

Vin: This is the input voltage of the board which ranges from 6V to 12V,

however, recommended input voltage ranges from 7V to 12V.

AREF: This is the analogue reference voltage that is a reference voltage for

the analogue inputs.

USART Communication: The board comes with USART serial

communication where two pins TX and RX are used for the transmission and

receiving of serial data.

SPI Communication: The device supports SPI (serial peripheral interface)

communication which allows the transmission of data between the controller

and other peripheral devices.

I2C Communication: The unit supports the I2C serial communication

protocol where two pins 20 & 21 are reserved for this communication. The 20

is an SDA pin which is a serial data line used for holding the data and the 21

is an SCL pin which is a serial clock line used employed for offering data

synchronization between the devices

13

Processor used in Arduino Mega:- ATmega 2560

The ATMEGA2560-16AU is an AVR 8-bit high-performance low-power

microcontroller from ATMEL Corporation. The ATMEGA2560-16AU is a RISC

(Reduced Instruction Set Computer) architecture microcontroller with 256kB of

flash memory. The microcontroller IC also houses 4kB of EEPROM, 8kB of

internal SRAM and 86 GPIO lines. The device also features three flexible

timers/counter, serial USART, SPI port, 10-bit ADC and five programmable

power saving modes. The operating voltage range is 1.8V to 5.5V. The A in

the suffix signifies that the microcontroller comes in a TQFP package and the

U signifies that the device has an “industrial” temperature range

14

Pin Configuration

The pin description of the ATMEGA2560-16AU microcontroller is given in the
following table:

Pin name Pin description

Vcc, GND Digital supply voltage and ground pins

PA7:0
Port A pins. Bi-directional I/O port with internal pull up
resistors.

PB7:0
Port B pins. Bi-directional I/O port with internal pull up
resistors.

PC5:0
Port C pins. Bi-directional I/O port with internal pull up
resistors.

15

PD7:0
Port D pins. Bi-directional I/O port with internal pull up
resistors.

PE7:0
Port E pins. Bi-directional I/O port with internal pull up
resistors.

PF7:0 Analog input port for the ADC.

PH/J/K/L7:0
Port H/J/K/L pins. Bi-directional I/O port with internal pull
up resistors.

AVcc Supply voltage for ADC.

Aref Analog reference pin for ADC.

Features of ATmega 2560:-

 8-bit microcontroller

 RISC architecture

 Powerful instruction set

 Fully static operation

 16 MIPS throughput at 16MHz

 On-chip 2 cycle multiplier

 4kB EEPROM

 8kB built-in SRAM

 256kB flash memory

 Optional boot code section

 Firmware lock security feature

 Real time counter with separate oscillator

 12 x PWM channels

 16-channel 10-bit ADC

 4 x Programmable serial USART

 SPI interface

16

 On-chip analog comparator

 Internal calibrated oscillator

 Support for power down modes

How to Program Arduino Mega 2560:

Arduino Mega 2560 can be programmed using Arduino IDE software which is

an official Arduino software used to program all Arduino boards. This software

is used for writing, compiling, and uploading the code into the Arduino board.

This unit comes with a USB interface so a USB cable can be used to connect

the device with the computer through which you can transfer sketch (Arduino

program is called a sketch) to the board. Moreover, this software is open-

source which means it is free to use and anyone can use this software to

allow the board to work as per the number of instructions you send from this

software to the Arduino board.

The Arduino IDE (Integrated Development Environment) is a software

application used to write, compile, and upload code to Arduino boards. It is a

cross-platform tool, meaning it works on Windows, macOS, and Linux, and is

based on the Processing IDE. The Arduino IDE is designed to be user-

friendly, especially for beginners, and provides a simplified way to program

Arduino boards using the C and C++ languages.

Here's a more detailed look at the Arduino IDE:

Key Features:

 Text Editor:

A text editor where you write your Arduino code, called a sketch, using the

C/C++ language.

 Compiler:

Converts your code into a machine-readable format that the Arduino board

can understand.

 Uploader:

17

Transfers the compiled code to the Arduino board via USB.

 Serial Monitor:

Allows you to communicate with your Arduino board through a serial interface,

sending and receiving text data.

 Library Manager:

Enables you to install and manage third-party libraries that add functionality to

your Arduino code.

 Board Manager:

Allows you to install and manage different Arduino boards and their

configurations.

 Example Sketches:

A collection of pre-written code snippets that demonstrate various features of

the Arduino platform.

How to Use:

1. Install the IDE: Download the Arduino IDE from the official website and

install it on your computer.

2. Connect your Arduino board: Plug your Arduino board into your

computer via USB.

3. Open the IDE: Launch the Arduino IDE application.

4. Write your sketch: Type your code into the text editor.

5. Verify your code: Use the "Verify" button to check for any syntax errors

in your code.

6. Upload your code: Use the "Upload" button to transfer the code to your

Arduino board.

18

7. Use the Serial Monitor: Open the Serial Monitor to interact with your

Arduino board and see the output of your code.

In essence, the Arduino IDE provides a complete environment for

programming Arduino boards, making it easier to write, compile, and upload

your code, and to interact with your board using the Serial Monitor.

 Getting Started with Arduino

Applications:

This board can work as a stand-alone project or can be integrated with other
Arduino boards, Arduino shields, and raspberry pi boards. This unit is
recommended for electronic projects that require more memory space and
GPIO pins.

The following are the applications of this Arduino mega board.

1. Embedded Systems: Arduino mega plays a pivotal role in embedded
systems, serving as the brain behind countless electronic devices and
appliances.

2. Medical Equipment: Its reliability and performance make it a preferred
choice for medical devices, ensuring precise functionality in critical
applications.

3. Home Automation: Arduino mega facilitates the automation of household
tasks, enhancing convenience and efficiency in managing home appliances
and systems.

4. Automotive Devices: In the automotive industry, Arduino mega contributes
to the operation of various electronic components, ranging from engine control
units to entertainment systems.

5. Industrial Automation: Its robust capabilities make it well-suited for
industrial automation applications, enabling seamless control and monitoring
of manufacturing processes.

19

6. Security Systems: Arduino mega forms the backbone of security systems,
providing essential functionalities for surveillance cameras, access control
systems, and alarm systems.

7. Temperature-Controlled Devices: Its ability to precisely control
temperature makes it ideal for temperature-sensitive applications, such as
climate control systems and incubators.

8. Motor Control Systems: Arduino mega facilitates efficient control of
motors in diverse applications, from robotics to industrial machinery.

9. Digital Signal Processing: Its processing power enables it to handle
digital signal processing tasks efficiently, making it valuable in audio
processing, image processing, and communication systems.

10. Peripheral Interface Systems: Arduino mega interfaces seamlessly with
various peripherals, expanding its capabilities in interfacing with sensors,
displays, and communication modules.

20

2).Color Sensor (TCS230/TCS3200):

Color sensors provide more reliable solutions to complex automation

challenges. They are used in various industries including the food and

beverage, automotive and manufacturing industries for purposes such as

detecting material, detecting color marks on parts, verifying steps in the

manufacturing process and so on.

The TCS230 color sensor (also branded as the TCS3200) is quite popular,

inexpensive and easy to use.

21

Specification of Color Sensor:

 Input voltage: (2.7V to 5.5V)

 Interface: Digital TTL

 High-resolution conversion of light intensity to frequency

 Programmable colour and full-scale output frequency

 No need of ADC(Can be directly connected to the digital pins of the

microcontroller)

 Power down feature

 Working temperature: -40oC to 85oC

 Size: 28.4x28.4mm(1.12x1.12")

How TCS230 / TCS3200 Color Sensor Works:

 The TCS230 senses color light with the help of an 8 x 8 array of

photodiodes. Then using a Current-to-Frequency Converter the readings

from the photodiodes are converted into a square wave with a frequency

directly proportional to the light intensity. Finally, using the Arduino Board

we can read the square wave output and get the results for the color.

 If we take a closer look at the sensor we can see how it detects various

colors. The photodiodes have three different color filters. Sixteen of them

have red filters, another 16 have green filters, another 16 have blue filters

and the other 16 photodiodes are clear with no filters.

Each 16 photodiodes are connected in parallel, so using the two control

pins S2 and S3 we can select which of them will be read. So for example, if

22

we want to detect red color, we can just use the 16 red filtered photodiodes

by setting the two pins to low logic level according to the table.

The sensor has two more control pins, S0 and S1 which are used for

scaling the output frequency. The frequency can be scaled to three different

preset values of 100 %, 20 % or 2%. This frequency-scaling function allows

the output of the sensor to be optimized for various frequency counters or

microcontrollers.

Now we are ready to move on and connect the TCS230 sensor to the

Arduino board. Here’s the circuit schematics.

23

24

3).Control of Motors using L298N Motor Driver:

Motor speed control by PWM pin:-

We can control the speed of the DC motor by simply controlling the input

voltage to the motor and the most common method of doing that is by using

PWM signal.

 PWM DC Motor Control

 PWM, or pulse width modulation is a technique which allows us to

adjust the average value of the voltage that’s going to the electronic

device by turning on and off the power at a fast rate. The average

voltage depends on the duty cycle, or the amount of time the signal is

ON versus the amount of time the signal is OFF in a single period of

time.

 So depending on the size of the motor, we can simply connect an
Arduino PWM output to the base of transistor or the gate of a MOSFET
and control the speed of the motor by controlling the PWM output. The
low power Arduino PWM signal switches on and off the gate at the
MOSFET through which the high power motor is driven.

25

H-Bridge DC Motor Control

 On the other hand, for controlling the rotation direction, we just need to

inverse the direction of the current flow through the motor, and the most

common method of doing that is by using an H-Bridge. An H-Bridge

circuit contains four switching elements, transistors or MOSFETs, with

the motor at the center forming an H-like configuration. By activating

two particular switches at the same time we can change the direction of

the current flow, thus change the rotation direction of the motor.

https://en.wikipedia.org/wiki/MOSFET

26

 So if we combine these two methods, the PWM and the H-Bridge, we

can have a complete control over the DC motor. There are many DC

motor drivers that have these features and the L298N is one of them.

There are many DC motor drivers that have these features and the L298N is

one of them.

This L298N Motor Driver Module is a high power motor driver module for

driving DC and Stepper Motors. This module consists of an L298 motor driver

IC and a 78M05 5V regulator. L298N Module can control up to 4 DC motors,

or 2 DC motors with directional and speed control.

Specification of L298N Motor Driver:

 Driver Model: L298N 2A

 Driver Chip: Double H Bridge L298N

27

 Motor Supply Voltage (Maximum): 46V

 Motor Supply Current (Maximum): 2A

 Logic Voltage: 5V

 Driver Voltage: 5-35V

 Driver Current:2A

 Logical Current:0-36mA

 Maximum Power (W): 25W

 Current Sense for each motor

 Heatsink for better performance

 Power-On LED indicator

The module has two screw terminal blocks for the motor A and B, and another

screw terminal block for the Ground pin, the VCC for motor and a 5V pin which

can either be an input or output.

This depends on the voltage used at the motors VCC. The module have an

onboard 5V regulator which is either enabled or disabled using a jumper. If the

motor supply voltage is up to 12V we can enable the 5V regulator and the 5V

pin can be used as output, for example for powering our Arduino board. But if

the motor voltage is greater than 12V we must disconnect the jumper because

those voltages will cause damage to the onboard 5V regulator. In this case the

5V pin will be used as input as we need connect it to a 5V power supply in

order the IC to work properly.

28

We can note here that this IC makes a voltage drop of about 2V. So for

example, if we use a 12V power supply, the voltage at motors terminals will be

about 10V, which means that we won’t be able to get the maximum speed out

of our 12V DC motor.

Next are the logic control inputs. The Enable A and Enable B pins are used for

enabling and controlling the speed of the motor. If a jumper is present on this

pin, the motor will be enabled and work at maximum speed, and if we remove

the jumper we can connect a PWM input to this pin and in that way control the

speed of the motor. If we connect this pin to a Ground the motor will be

disable. Next, the Input 1 and Input 2 pins are used for controlling the rotation

direction of the motor A, and the inputs 3 and 4 for the motor B. Using these

29

pins we actually control the switches of the H-Bridge inside the L298N IC. If

input 1 is LOW and input 2 is HIGH the motor will move forward, and vice

versa, if input 1 is HIGH and input 2 is LOW the motor will move backward. In

case both inputs are same, either LOW or HIGH the motor will stop. The same

applies for the inputs 3 and 4 and the motor B.

4).12v DC Gear Motor:

DC Motors :- Two main types of DC motors exist: brushed and brushless,

with permanent magnet DC (PMDC) motors also being a widely used motor

type for simpler, cost-effective solutions. Brushed motors employ brushes and

a commutator, whereas brushless motors use electronic controllers for

smoother operation, reduced maintenance, and higher efficiency.

This efficiency typically ranges between 70% and 90%, a reflection of these

motors’ ability to maximize power output while minimizing energy loss.

Understanding these principles allows us to appreciate how DC motors

effectively balance torque and efficiency, making them indispensable in

various technical applications.

What is a Gearmotor?

A gearmotor, also known as a geared motor, is essentially a combination of a

motor and a gearbox. Its design integrates these components to optimize

performance and increase versatility in various applications. Gearmotors are

often categorized based on the type of gearbox and motor they employ—most

common motor types are DC or AC motors—each gearbox serving unique

purposes and functions.

To fully appreciate the workings of a gearmotor, it is essential to understand

its primary components:

30

1. Motor: The motor generates rotational motion. In most gearmotors,

either a brushed or brushless DC motor is used. Brushed motors are

known for their simplicity and cost-effectiveness, while brushless motors

excel in efficiency and longevity.

2. Gearbox: This system of gears is responsible for altering the output

torque and speed of the motor. Depending on the gear ratio employed,

the gearbox can significantly enhance torque output while concurrently

reducing the rotational speed. This adaptation makes gearmotors

suitable for various tasks where high torque and controlled speed are

vital.

3. Mounting and Accessories: Gearmotors are often equipped with

various accessories, such as encoders for position feedback and

mounting brackets that facilitate easy integration into machinery.

Basics of DC Gearmotors:

DC gearmotors are engineered to deliver high torque at reduced speeds,

making them ideal for industrial applications requiring precise motor control,

such as robotics and automation. By integrating a gearbox, these motors

effectively transform the motor’s speed and torque, enabling controlled motion

and enhanced performance in demanding scenarios.

DC gear motors typically achieve an operational efficiency between 70% and

90%, contingent on their design and load conditions. This efficiency minimizes

power loss, ensuring the motors’ reliability and longevity.

DC Gearmotor Key Parameters:

When selecting a gear motor, we must consider key parameters: speed,

measured in revolutions per minute (RPM); torque, expressed in pound-inches

(lb-in); and efficiency (%). These factors must align with the application’s

31

requirements to optimize motor control and achieve desired operational

outcomes.

Working Principle:

Understanding the working principle of DC gear motors requires delving into

the electromagnetic induction process that drives them. When direct current is

applied to the motor, it generates a magnetic field within the stator. This

magnetic field interacts with the rotor, creating a rotational motion through

electromagnetic forces. The motor’s rotation and the output shaft are the

primary mechanisms that transform electrical energy into mechanical energy.

Incorporating a gearbox into this system effectively modifies the motor’s

output characteristics. The gearbox reduces the speed of the motor while

simultaneously increasing its torque. This alteration is essential for

applications demanding precise control and high torque at lower speeds. The

gear mechanism achieves this by altering the gear ratio, thereby tailoring the

speed and torque to specific requirements.

The interplay between speed and torque is vital in the operation of DC gear

motors. By controlling these parameters, we can adapt the motor’s

32

performance to the unique demands of various applications, such as robotics

and automation.

The efficiency of this process typically ranges from 70-90%, making these

motors both practical and versatile for challenging environments.

Understanding these principles equips us to harness the full potential of DC

gear motors effectively.

Key Motor Characteristics:

Speed and Torque:

Building on the relationship between speed and torque, let’s explore the key

characteristics that define a DC gear motor’s performance. A fundamental

aspect is the relationship between speed and torque, quantified in RPM and

foot-pounds or kg-cm, respectively. These metrics are essential for evaluating

motor performance, as they determine the motor’s capacity to handle

resistance and maintain desired operational velocities.

Gear Ratio / Gear Reduction:

In a DC small gear motor, gear reduction plays a significant role. By adjusting

the gear ratio, such as 48:1, we can effectively reduce speed while amplifying

torque. This balance is necessary for applications demanding precision and

control, ensuring the motor delivers ideal performance under various load

conditions.

Voltage and Current:

Voltage is another important parameter; DC motors typically operate at rated

voltages to achieve peak efficiency. Operating below this threshold can

diminish power output, while exceeding it may lead to overheating and

potential burnout. The rated speed, achieved at this voltage, directly

33

influences application performance, dictating how well a motor can meet

specific demands.

Understanding stall current and running current under no load is crucial for

evaluating energy consumption and efficiency. Stall current marks the

maximum power draw when stopped, contrasting with the lower running

current during operation.

Types of DC Motors

DC motors, a staple in various engineering applications, come in several

types, each tailored for specific needs and operational environments,

including dc brushed motors that use conductive brushes for electrical

commutation.

 Brushed Motor

 Brushless Motor (BLDC)

 Planetary Gear Motor

 Spur Gear Motor

 Stepper Motor

 Coreless & Coreless Brushless

 Servo

Brushed DC Motor for Cost-Effective Power:

Brushed DC motors use brushes and commutators to deliver straightforward,

affordable power. While they do require maintenance due to brush wear, their

simplicity makes them a dependable choice in applications where budget

constraints and ease of operation take priority.

Brushless DC Motor (BLDC Motor) for High Efficiency

By removing brushes from the design, BLDC motors achieve superior

efficiency and extended service life. Their low-maintenance nature and

https://islproducts.com/component/brushed-dc-motors/
https://islproducts.com/component/brushless-dc-motors/
https://islproducts.com/component/planetary-gear-motors/
https://islproducts.com/component/spur-gear-motors/
https://islproducts.com/component/stepper-motors/
https://islproducts.com/component/coreless-brushed-dc-motors/
https://islproducts.com/component/coreless-brushless-dc-motors/
https://islproducts.com/component/dc-servo-motors/

34

precise control capabilities make them particularly suited for demanding

applications that prioritize longevity and accuracy.

Planetary Gear DC Motor for Compact High Torque:

When DC motors are combined with compact planetary gearboxes, they

deliver high torque output within space-limited environments. This integration

is ideal for sophisticated automation tasks, where reliable torque is required

without sacrificing a small footprint.

Spur Gear DC Motor for Reliable Motion:

Spur gear DC motors, sometimes referred to as parallel shaft motors, feature

a straightforward gear arrangement that translates motor rotation into reliable

motion. By pairing DC motors with spur gears, these setups offer balanced

performance for general applications requiring moderate torque and

consistent speed.

Stepper Motor for Precision Positioning:

Stepper motors move in discrete steps, making them the go-to choice for

projects involving accurate positioning and repeatable movements. Their

inherent design allows for controlled, incremental motion without the need for

additional feedback systems.

Coreless DC Motor & Coreless Brushless DC Motor for Enhanced

Performance:

Coreless motors eliminate the traditional iron core, reducing overall weight

and inertia. This design yields smooth operation and rapid acceleration, with

coreless brushless variants providing even greater efficiency and durability.

35

Servo Motor for Accurate Control:

Servo motors employ feedback mechanisms to deliver precise positional

control, making them indispensable where accuracy and responsiveness are

paramount. Shaft gear motors, a type of servo motor, are commonly used in

robotics and automation, since they adjust output based on real-time input for

consistently accurate performance.

Benefits of using a DC Gear Motor

DC gear motors can provide several unique benefits, making this type of

motor better suited to many applications.

Some benefits of a gear motor include:

 Increased torque: The reduction mechanism increases the torque

output, allowing the combined unit to power loads that require more

torque than the motor alone can produce. For higher torque

applications, you want to use metal gears, as opposed to plastic.

 Reduced speed: The gear reducer also lowers the rotational speed of

the motor’s output shaft, which is beneficial in applications where high

speeds are neither required nor desirable.

 More efficient power transfer: Especially with planetary gearmotors,

the gears inside the gearbox or speed reducer provide power efficiently.

 Compact size and design: Combined power solutions are designed to

be space-saving, both inline and right angle options are available. You

can get a small DC gear motor, which is beneficial if space is limited.

 Greater flexibility: The ability to adjust the gear ratio to provide the

desired operating conditions allows for more control over the torque and

speed output, which is helpful in various types of applications.

https://islproducts.com/design-note/planetary-gear-motors-vs-spur-gear-motors/

36

Selecting the Right Motor:

Selecting the right motor is vital for enhancing performance and efficiency in

any application. In the motor selection process, we must carefully analyze

speed and torque requirements to guarantee compatibility with the

application’s load demands. Determining these parameters allows us to match

the motor’s capabilities with the required performance criteria, guaranteeing

peak functionality.

Evaluating Voltage and Current Ratings:

Equally important is evaluating the motor’s voltage and current ratings to

match the power supply. A motor operating efficiently within its rated

specifications minimizes energy waste and enhances reliability. This

alignment guarantees the motor’s continuous operation without risking

performance degradation or failure due to mismatched power parameters.

Dimensions and Configuration:

Physical dimensions and mounting configurations are significant

considerations as well. We need to confirm the motor fits within the spatial

constraints of our design. Customization options such as gear ratios and shaft

configurations should be assessed to tailor the motor to our specific

application needs, maximizing performance and efficiency.

Environmental Factors:

Finally, understanding environmental factors like noise levels and temperature

ranges is vital. These considerations affect the motor’s durability and

suitability for intended operating conditions, guaranteeing longevity and

consistent performance.

37

Common Applications:

When choosing the right motor, understanding its common applications can

aid in making informed decisions that enhance system performance.

Robotics and Automation:

DC gear motors excel in scenarios demanding high torque and precise

control, making them indispensable across various industries. In

robotics, robots utilize these motors to drive wheels and actuators, providing

the requisite torque and speed control necessary for intricate maneuvers and

tasks. Their ability to deliver consistent performance in compact designs is

essential for automated systems.

Automotive Industry:

In the automotive sector, dc gear motors are vital for applications like window

lifts, seat adjusters, and windshield wipers, where controlled motion is

paramount. Their reliability guarantees seamless operation, contributing to

overall vehicle functionality.

Industrial Machinery:

Industrial machinery also benefits from these motors, particularly in conveyor

belt systems, where they facilitate efficient material handling and transport

with minimal power consumption.

Consumer Electronics:

Consumer electronics, including automated toys, power tools, home

automation assistants, and small home appliances frequently utilize small

gear motors to achieve reliable motion. Their compact and efficient design

allows for enhanced user experience without compromising performance.

38

Medical Industry:

Additionally, in the medical field, medical equipment and devices such as

precision surgical tools and powered wheelchairs rely on these motors for

their ability to deliver precise control and quiet operation, assuring safety and

reliability in critical applications.

Motor used in project :

A 12V DC gear motor is a type of direct current (DC) electric motor that uses

a gearbox to reduce the motor's speed and increase its torque output. The

motor operates on a 12V DC power supply and is commonly used in various

applications where moderate power, torque, and controlled speed are needed.

The gear mechanism allows the motor to provide more force (torque) at a

slower rotational speed, which is ideal for tasks like driving wheels in robotics,

lifting mechanisms, or other machinery that requires precise motion

control.(Recommended to be used with DC Motor Driver 20A or Dual DC Motor Driver

20A)

Specification of 12v Gear Motor:

 Power Supply: 12V DC

 RPM: 150

 Rated Torque: 4.7 kg-cm

 6mm Dia shaft with M3 thread hole

39

 Gearbox diameter: 37 mm

 Motor Diameter: 28.5 mm

 Length without shaft: 63 mm

 Shaft length: 30mm

 Weight: 180gm

 No-load current = 800 mA, Load current = upto 7.5 A(Max)

5).Servo Motor:

A servo motor is a type of motor used in various control systems where

precise control of angular position, velocity, and acceleration is required.

Servo motors are widely used in robotics, automation systems, CNC

machinery, and radio-controlled (RC) vehicles, among other applications.

Unlike regular motors, which rotate continuously, servo motors are designed

to rotate to specific positions based on the control signal they receive.

40

What is a Servo Motor?
A servo motor is a rotary actuator that enables accurate control of angular

position. It comprises a motor, a feedback system, and a controller. The

feedback system constantly monitors the motor's actual position and adjusts it

to match the desired position. The controller interprets the difference between

the actual and desired positions, sending signals to the motor to correct any

variations.

Construction of Servo Motor:

The construction of a servo motor involves many key components that are

used to enable precise control of angular position. A servo motor is similar to a

regular motor, but it has more additional parts to facilitate position control.

These essential components include sensors, gears, and a circuit. The motor

is guided by a controller, such as Arduino or STM. In industrial applications,

AC servo motors utilize an encoder as a position sensor, while DC servo

motors employ a potentiometer for this purpose.

A DC servo motor is assembled by combining a DC motor with various

components like a gearbox, controller, and potentiometer. On the other hand,

an AC servo motor uses an induction motor, complemented by gears and

encoders for precise control.

41

Components of Servo Motor:

 Rotor and Stator: The core of a servo motor consists of two main

parts: the rotor (the moving part) and the stator (the stationary part).

The rotor is typically connected to the output shaft, responsible for

generating motion.

 Feedback Device: Incorporated within the servo motor is a feedback

device, often in the form of an encoder or resolver. This device

constantly monitors the actual position of the rotor and provides this

information to the controller.

 Controller: The controller is the most important part of the servo motor

system. It interprets the feedback from the encoder and compares it to

42

the desired position. If there's any difference, the controller calculates

the necessary adjustment.

 Control Input: The servo motor receives control input, usually in the

form of electrical pulses. The controller utilizes this input to determine

how much and in which direction the motor should move.

 Power Supply: The motor requires a power supply, typically in the form

of direct current (DC) or alternating current (AC), depending on the

motor type.

 Gear Train (optional): In some servo motors, especially those used in

robotics, a gear train may be included to amplify the torque or adjust the

speed of the output shaft.

Working of Servo Motor:
A servo motor works in a simple way and is easy to understand. Usually, a

servo motor has a system called closed-loop control. This system includes a

comparator and a feedback path. It's like a setup that constantly checks and

adjusts the motor to keep it in the right place. The comparator is an important

part of the servo motor. It carefully checks where the motor is right now and

compares it to where it's supposed to be. If there's a difference, it signals that

there's an error, telling the motor to make the necessary adjustments to get to

the correct position.

The block diagram below shows the components of a standard servo motor

control system:

Servo motors are commonly controlled using a method called Pulse Width

Modulation (PWM). This technique requires the transmission of an electrical

signal containing pulses of different lengths to the motor. These pulses have a

width that varies between 1 to 2 milliseconds, and they are sent repeatedly at

a rate of 50 times per second to the servo motor. The adjustment of the pulse

width serves as a means to effectively control the position of the rotating shaft

in the servo motor. In simpler terms, changing the duration of these pulses

guides the motor in achieving the desired position for its rotating shaft.

43

Types of Servo Motor

Servo motors are broadly classified into two categories depending on their

power source:

1).DC Servo Motor:

A DC servo motor consists of essential components like a DC motor, position

sensor, gear assembly, and control circuit. This motor allows precise control of

speed and position. To set the desired output, a DC reference voltage is

determined using a potentiometer, pulse converter, or timers. In digital control,

microprocessors generate PWM pulses for accuracy. Feedback, obtained

through a potentiometer, guides an error amplifier, ensuring precise motor

positioning. The amplifier compares current and desired positions, generating

an error voltage that powers the motor until the error is zero, facilitating

accurate rotation.

44

2).AC Servo Motor:

AC servo motors are a specific type of servomotor that converts AC electricity

into precise mechanical movements, focusing on accurate angular velocity.

Essentially, these motors are two-phase induction motors, featuring specific

design distinctions. They produce mechanical power ranging from a few watts

to several hundred watts, operating within a frequency range of 50 to 400 Hz.

What sets them apart is their utilization of a closed-loop control system,

employing encoders to monitor speed and position. This feature makes these

motors exceptionally adept at precision and control, distinguishing them from

others lacking such an advanced feedback system.

Characteristics of Servo Motor:

Servo Motors features several key characteristics that make them an excellent

choice for applications that require precise control and accuracy. Here are

some key characteristics of servo motors

 High Precision: Servo motors provide precise control over position,

speed, and torque. This precision is achieved through the use of

feedback devices such as encoders, which continuously monitor the

motor's actual position and provide feedback to the controller.

45

 Fast Response Time: Servo motors have an impressive response

time, allowing them to quickly adjust their speed and position based on

changing input signals.

 High Torque: Another characteristic of servo motors is their ability to

deliver high torque even at low speeds. The high torque output of servo

motors ensures that they can handle heavy loads and perform tasks

with precision.

 Closed-Loop Control: Servo motors operate in a closed-loop control

system, which means that they continuously receive feedback about

their actual position and adjust their performance accordingly.

 Wide Speed Range: Servo motors offer a wide speed range, allowing

them to operate at both high and low speeds without compromising

performance.

 Low Inertia: Low rotor inertia enables quick acceleration and

deceleration, contributing to the motor's dynamic performance.

How To Control a Servo Motor?

Servo motors are operated by transmitting an electrical pulse, known as pulse

width modulation (PWM), through a control wire. This pulse has a variable

width and consists of a minimum and maximum value, along with a repetition

rate. The servo motor typically has a limited range of movement, usually 180°

in total, with a capability of turning 90° in either direction from its neutral

position. The neutral position is the point where the servo can rotate equally in

both clockwise and counter-clockwise directions.

The position of the servo motor's shaft is determined by the duration of the

PWM pulse sent through the control wire. The motor anticipates receiving a

pulse every 20 milliseconds (ms), and the length of the pulse dictates how far

the motor will turn. For instance, a 1.5ms pulse will position the motor at 90°.

Pulses shorter than 1.5ms move the motor counter-clockwise toward the 0°

position, while pulses longer than 1.5ms cause the servo to turn clockwise

toward the 180° position.

46

Once directed to a specific position, these servos will maintain and resist any

external force attempting to displace them. The extent of force a servo can

withstand is referred to as its torque rating. It's essential to note that servos

don't sustain their position indefinitely; a repetition of the position pulse is

required to instruct the servo to stay in the designated position.

Interfacing Servo Motors with Microcontrollers:

In order to control servo motors, they need to be interfaced with

microcontrollers, which act as the brain of the system. There are several

methods to interface servo motors with microcontrollers. One common

approach is to use pulse width modulation (PWM). PWM works by varying the

width of the pulse signal to control the position of the servo motor. The

microcontroller generates the PWM signal, which is then sent to the servo

motor. By changing the pulse width, the microcontroller can control the angle

at which the servo motor rotates. To interface a servo motor with a

microcontroller, you will need to connect the servo motor to the appropriate

pins of the microcontroller.

Servo Motors have three wires:

47

 Power

 Ground

 Signal

The power and ground wires are connected to a power source, while the

signal wire is connected to a PWM pin on the microcontroller. Once the

hardware connections are made, you can start programming the

microcontroller to control the servo motor. This involves writing code that

generates the PWM signal with the desired pulse width. The microcontroller

will continuously send the PWM signal to the servo motor, causing it to rotate

to the desired angle. It is important to note that different servo motors may

have different operating characteristics, such as the range of angles they can

rotate or the speed at which they can move. Therefore, it is essential to

consult the datasheet or specifications of the servo motor to ensure proper

interfacing and control.

48

Applications of Servo Motors

Servo Motors have a wide range of applications across industries. Let's

explore some of the common applications of servo motors:

 Robotics: Servo motors are used in robot arms, grippers, and joints to

achieve accurate positioning and smooth motion. This enables robots to

perform tasks with precision, such as assembly, welding, and material

handling.

 CNC Machines: Servo motors are extensively used in Computer

Numerical Control (CNC) machines. They control the movement of the

cutting tools, ensuring precise and consistent machining operations.

The servo motors enable high-speed positioning and accurate control

over the cutting process, resulting in superior quality and productivity.

 Industrial Automation: They are used in conveyors, packaging

machines, printing presses, and other automated equipment. The

precise control offered by servo motors ensures efficient and reliable

operation, improving productivity and reducing downtime.

 Aerospace and Defense: Servo motors are used in aircraft control

surfaces, missile guidance systems, and unmanned aerial vehicles

(UAVs). The high accuracy and responsiveness of servo motors enable

accurate control of flight surfaces and guidance mechanisms, ensuring

safe and reliable operation.

 Electronics: Servos are commonly used in electronic devices such as

cameras, where they facilitate autofocus and image stabilization. They

are also found in consumer electronics like DVD players and home

automation systems.

 Renewable Energy: Servo motors are used in solar tracking systems

to adjust the position of solar panels, optimizing their orientation to the

sun for increased energy capture.

49

Specification of Servo Motor:

1. Operating Voltage

 Common values: 4.8V – 6V for small hobby servos
 Industrial servos: 24V, 48V, or higher

2. Torque

 Unit: kg·cm (kilogram-centimeter) or N·m (Newton-meter)
 Example: 4.5 kg·cm @ 6V (can hold 4.5 kg at 1 cm distance from shaft)

3. Speed

 Unit: sec/60° (time to rotate 60 degrees)
 Example: 0.1 sec/60° @ 6V (faster at higher voltages)

4. Angle of Rotation

 Typically 0° to 180° for hobby servos
 Special servos: 360° continuous or limited custom angles

5. Motor Type

 Brushed DC Motor (common in basic servos)
 Brushless DC Motor (for precision and long life)

6. Control Signal

 Pulse Width Modulation (PWM)
o Pulse width: 1 ms to 2 ms typically
o Frame rate: 20 ms (50 Hz)

7. Dimensions and Weight

 Depends on the model:
o Micro servo: ~12g, small dimensions
o Standard servo: ~40g, ~40mm x 20mm x 40mm

8. Gearing

 Plastic gears (cheap, light-duty)
 Metal gears (heavy-duty, durable)

9. Feedback Mechanism

50

 Potentiometer (basic models)
 Optical or magnetic encoders (high-end servos)

10. Bearing Type

 Bushings (cheaper)
 Ball bearings (better performance)

11. Stall Current

 Important for sizing the power supply.
 Can range from 500mA to 2A or more in hobby servos.

12. Applications

 Robotics
 Remote Control (RC) vehicles
 CNC machinery
 Automation systems

6).LCD Display:

LCD (Liquid Crystal Display) is a type of flat panel display which uses liquid

crystals in its primary form of operation. LEDs have a large and varying set of

use cases for consumers and businesses, as they can be commonly found in

smartphones, televisions, computer monitors and instrument panels.

LCDs were a big leap in terms of the technology they replaced, which include

light-emitting diode (LED) and gas-plasma displays. LCDs allowed displays to

be much thinner than cathode ray tube (CRT) technology. LCDs consume

much less power than LED and gas-display displays because they work on

the principle of blocking light rather than emitting it. Where an LED emits light,

the liquid crystals in an LCD produces an image using a backlight.

As LCDs have replaced older display technologies, LCDs have begun being

replaced by new display technologies such as OLEDs.

51

LCD 16x2 Pin Description:

Pin 3 - VEE pin

This pin is used for adjusting the contrast of the display. Voltage on this pin

defines contrast on display, lower the voltage, higher the contrast. We can

connect 4.7 k pot for contrast adjustment or simply connect this pin to ground

to get maximum contrast.

Pin 4 –RS: Register Select pin

 RS = 0: Data on the D0 to D7 pins is considered as a command.

52

 RS = 1: Data on the D0 to D7 pins is considered as data to

display on LCD16x2.

Pin 5 – RW: Read / Write pin

 RW = 0: Write data to the LCD

 RW = 1: Read data from the LCD

Pin 6 –E: Enable

This pin is used to latch the data present on the data pins D0 to D7. High to

low pulse with a minimum width of 450 ns is required to latch the data to the

display.

Pins 7:14 - DATA pins D0 to D7

Data pins are used to send data/command to the LCD16x2 as parallel 8 data

bits.

Pin 15:16 - LED + and LED -

Liquid Crystal Displays don’t have their own light like seven segment displays.

Therefore, the module has a backlight LED. Supply to this LED is provided

through these pins.

Specification of LCD16x2:

1. Display Type: Alphanumeric character display

2. Character Format: 5x8 dots matrix format

3. Display Size: 16 characters x 2 lines

4. Display Color: Blue or Green

5. Backlight: LED backlight

6. Voltage Supply: 5V DC

7. Operating Temperature: -20°C to +70°C

8. Interface: 4-bit or 8-bit mode

9. Dimension: 84.0 x 44.0 x 13.0 mm

53

LCD 16x2 Commands:

While interfacing an LCD16x2 with any microcontroller, firstly we need to

initialize the LCD. For that, we need to send some commands. Similarly, to

clear the display or for changing the position we need to send commands. So

basically, we can say that LCD16x2 is controlled by using commands.

Commonly Used LCD16x2 Commands

Code

(HEX)
Command to LCD

Execution

Time

0x01 Clear the display screen 1.64ms

0x06
Shift the cursor right (e.g. data gets written in

an incrementing order, left to right)
40 us

0x0C Display on, cursor off 40 us

0x0E Display on, cursor blinking 40 us

0x80 Force the cursor to the beginning of the 1st line 40 us

0xC0
Force the cursor to the beginning of the 2nd

line
40 us

0x10 Shift cursor position to the left 40 us

0x14 Shift cursor position to the right 40 us

0x18 Shift entire display to the left 40 us

0x1C Shift entire display to the right 40 us

54

0x38 2 lines, 5x8 matrix, 8-bit mode 40 us

0x28 2 lines, 5x8 matrix,4-bit mode 40 us

0x30 1 line, 8-bit mode 40us

0x20 1 line, 4-bit mode 40us

Now, while printing a character on LCD16x2, we need to send the ASCII code

of that character to LCD16x2. Suppose, we want to print a character ‘H’ on the

LCD, then we should send 0x48 (ASCII code of ‘H’) data to the LCD16x2. The

LCD16x2 has its own controller, which does the printing job on the LCD16x2.

Construction of Liquid Crystal Display:

The LCD is constructed from two pieces of polarized glass. There are two

electrodes used: a positive electrode and a negative electrode.

External voltage is applied to the LCD to LCD using these electrodes and it is

made up of indium-tin-oxide. A 10–20 µm liquid crystal layer is sandwiched

between two sheets of glass.

By altering the polarization, light can be transmitted through or prevented.

https://www.learnelectronicswithme.com/2020/10/liquid-crystal-displaylcd-construction.html

55

Working Principle:

The basic working principle of LCD is obstruction of light. It cannot generate

light by itself. Thus, an external light source is required. When external light

moves from one polarizer to the next, a liquid crystal receives an external

supply, and the polarized light aligns itself to form an image on the screen.

The transparent layer on each side of the sealed thick layer of liquid crystal is

the indium oxide conducting surface. The molecular arrangement is

unaffected in the absence of any external bias.

https://www.learnelectronicswithme.com/2020/10/liquid-crystal-displaylcd-construction.html
https://www.learnelectronicswithme.com/2020/10/liquid-crystal-displaylcd-construction.html

56

The molecular arrangement changes when an external bias occurs, making

one area appear dark and the other area appear clea

How LCDs work:

A display is made up of millions of pixels. The quality of a display commonly

refers to the number of pixels; for example, a 4K display is made up of 3840

x2160 or 4096x2160 pixels. A pixel is made up of three subpixels; a red, blue

and green—commonly called RGB. When the subpixels in a pixel change

color combinations, a different color can be produced. With all the pixels on a

display working together, the display can make millions of different colors.

When the pixels are rapidly switched on and off, a picture is created.

The way a pixel is controlled is different in each type of display; CRT, LED,

LCD and newer types of displays all control pixels differently. In short, LCDs

are lit by a backlight, and pixels are switched on and off electronically while

using liquid crystals to rotate polarized light. A polarizing glass filter is placed

in front and behind all the pixels, the front filter is placed at 90 degrees. In

between both filters are the liquid crystals, which can be electronically

switched on and off.

 LCDs are made with either a passive matrix or an active matrix display grid.

The active matrix LCD is also known as a thin film transistor (TFT) display.

The passive matrix LCD has a grid of conductors with pixels located at each

intersection in the grid. A current is sent across two conductors on the grid to

control the light for any pixel. An active matrix has a transistor located at each

pixel intersection, requiring less current to control the luminance of a pixel. For

this reason, the current in an active matrix display can be switched on and off

more frequently, improving the screen refresh time.

Some passive matrix LCD's have dual scanning, meaning that they scan the

grid twice with current in the same time that it took for one scan in the original

technology. However, active matrix is still a superior technology out of the two.

57

7).I2C Module/Protocol:

I2C stands for Inter-Integrated Circuit. It is a bus interface connection protocol

incorporated into devices for serial communication. It was originally designed

by Philips Semiconductor in 1982. Recently, it is a widely used protocol for

short-distance communication. It is also known as Two Wired Interface(TWI).

Working of I2C Communication Protocol:

It uses only 2 bi-directional open-drain lines for data communication called

SDA and SCL. Both these lines are pulled high.

Serial Data (SDA) : Transfer of data takes place through this pin.

Serial Clock (SCL) : It carries the clock signal.

I2C operates in 2 modes

Master mode

Slave mode

Each data bit transferred on SDA line is synchronized by a high to the low

pulse of each clock on the SCL line.

58

According to I2C protocols, the data line can not change when the clock line is

high, it can change only when the clock line is low. The 2 lines are open drain,

hence a pull-up resistor is required so that the lines are high since the devices

on the I2C bus are active low. The data is transmitted in the form of packets

which comprises 9 bits. The sequence of these bits are –

Start Condition: 1 bit

Slave Address: 8 bit

Acknowledge: 1 bit

Steps of I2C Data Transmission?

Here are the steps of I2C (Inter-Integrated Circuit) data transmission

 Start Condition: The master device sends a start condition by pulling

the SDA line low while the SCL line is high. This signals that a

transmission is about to begin.

 Addressing the Slave: The master sends the 7-bit address of the slave

device it wants to communicate with, followed by a read/write bit. The

read/write bit indicates whether it wants to read from or write to the

slave.

 Acknowledge Bit (ACK): The addressed slave device responds by

pulling the SDA line low during the next clock pulse (SCL). This

confirms that the slave is ready to communicate.

59

 Data Transmission: The master or slave (depending on the read/write

operation) sends data in 8-bit chunks. After each byte, an ACK is sent

to confirm that the data has been received successfully.

 Stop Condition: When the transmission is complete, the master sends

a stop condition by releasing the SDA line to high while the SCL line is

high. This signals that the communication session has ended.

What is Start and Stop Conditions ?

START and STOP can be generated by keeping the SCL line high and

changing the level of SDA. To generate START condition the SDA is changed

from high to low while keeping the SCL high. To generate STOP condition

SDA goes from low to high while keeping the SCL high, as shown in the figure

below.

start and stop condition

Start and Stop Condition

What is Repeated Start Condition?

Between each start and stop condition pair, the bus is considered as busy and

no master can take control of the bus. If the master tries to initiate a new

transfer and does not want to release the bus before starting the new transfer,

it issues a new START condition. It is called a REPEATED START condition.

60

Read/Write Bit:

A high Read/Write bit indicates that the master is sending the data to the

slave, whereas a low Read/Write bit indicates that the master is receiving data

from the slave.

ACK/NACK Bit:

After every data frame, follows an ACK/NACK bit. If the data frame is received

successfully then ACK bit is sent to the sender by the receiver.

Addressing:

The address frame is the first frame after the start bit. The address of the

slave with which the master wants to communicate is sent by the master to

every slave connected with it. The slave then compares its own address with

this address and sends ACK.

I2C Packet Format:

In the I2C communication protocol, the data is transmitted in the form of

packets. These packets are 9 bits long, out of which the first 8 bits are put in

SDA line and the 9th bit is reserved for ACK/NACK i.e. Acknowledge or Not

Acknowledge by the receiver.

START condition plus address packet plus one more data packet plus STOP

condition collectively form a complete Data transfer.

Features of I2C Communication Protocol:

 Half-duplex Communication Protocol – Bi-directional communication

is possible but not simultaneously.

 Synchronous Communication – The data is transferred in the form of

frames or blocks.

 Can be configured in a multi-master configuration.

 Clock Stretching – The clock is stretched when the slave device is not

ready to accept more data by holding the SCL line low, hence disabling

61

the master to raise the clock line. Master will not be able to raise the

clock line because the wires are AND wired and wait until the slave

releases the SCL line to show it is ready to transfer next bit.

 Arbitration – I2C protocol supports multi-master bus system but more

than one bus can not be used simultaneously. The SDA and SCL are

monitored by the masters. If the SDA is found high when it was

supposed to be low it will be inferred that another master is active and

hence it stops the transfer of data.

 Serial transmission – I2C uses serial transmission for transmission of

data.

 Used for low-speed communication.

Advantages of I2C Communication Protocol

 Can be configured in multi-master mode.

 Complexity is reduced because it uses only 2 bi-directional lines (unlike

SPI Communication).

 Cost-efficient.

 It uses ACK/NACK feature due to which it has improved error handling

capabilities.

 Fewer Wires: Only two wires are needed, making it easier to set up.

 Multiple Devices: You can connect many devices to the same bus.

 Simple Communication: It’s relatively easy to program and use.

Why we use I2C Module for connection of LCD with Arduiuno

Mega:

When connecting an LCD display (like a 16x2 LCD) directly to an Arduino, you
normally need at least 6 to 10 digital pins (for RS, E, D4-D7, plus maybe RW
and backlight control).

 Problem:

 It uses too many pins.

 Wiring becomes messy and hard to debug.

62

Benefits of using I2C with LCD:

1).Saves Arduino pins:

 Only 2 pins needed (SDA and SCL).

2).Simpler wiring:

 Cleaner, fewer jumper cables.

3).Allows multiple devices:

 You can connect multiple I2C devices (sensors, displays) on the same

two wirs (addressed by different I2C addresses).

4).Easier programming:

 Libraries like LiquidCrystal_I2C.h make coding simpler.

5).More reliable:

 Fewer chances of wrong connections or noisy signals compared to

parallel wiring.

8).I2C With LCD:

GND is a ground pin and should be connected to the ground of Arduino.

VCC supplies power to the module and the LCD. Connect it to the 5V output

of the Arduino or a separate power supply.

63

SDA is a Serial Data pin. This line is used for both transmit and receive.

Connect to the SDA pin on the Arduino.

SCL is a Serial Clock pin. This is a timing signal supplied by the Bus Master

device. Connect to the SCL pin on the Arduino.

9).Interfacing I2C LCD With Arduino:

I2C LCD can be connected to the Arduino directly with SDA pin to SDA pin

and SCL pin to SCL pin as per the below circuit diagram. I2C LCD requires

additional library to be installed. The next step is to connect the LCD to the

address of the device using the following code. Those steps are explained in

detail below.

Steps to Interface LCD display with Arduino:

Step 1: Install the library for LCD display in Arduino IDE.

 Open Arduino IDE and navigate to Tools>Library Manager.

 Search for “LiquidCrystal I2C” and install the “LiquidCrystal I2C”
library in the Arduino IDE.

64

Step 2: Import “LiquidCrystal_I2C.h” header file in the code.

 Define header file in the code ” #include <LiquidCrystal_I2C.h> “.

Step 3: Connect display device to Arduino.

 Connect the SDA pin of an LCD display to the SDA pin of the Arduino.

 Connect the SCL pin of an LCD display to the SCL of the Arduino.

 Connect VCC to 5V pin

 Connect GND to GND pin.

10).Bluetooth Module(HM-10):

The HM-10 Bluetooth module is a low-power Bluetooth 4.0 (BLE) module

based on the TI CC2541 chip. It's widely used in wireless communication

projects and supports communication with both iOS and Android devices. The

HM-10 operates over UART and can be easily integrated with microcontrollers

like Arduino. It's popular due to its low power consumption, long range, and

compatibility with BLE devices.

65

Pinout of HM-10 Module:

1). UART_TX – UART transmit (serial data output).

2). UART_RX – UART receive (serial data input).

3). UART_CTS – UART Clear To Send (flow control, optional).

4). UART_RTS – UART Request To Send (flow control, optional).

5). NC – Not connected.

6). NC – Not connected.

7). NC – Not connected.

8). NC – Not connected.

66

9). NC – Not connected.

10). NC – Not connected.

11). RESETB – Reset input, active LOW. Pulling LOW resets the module.

12). VCC – Power supply input (3.3V).

13). GND – Ground.

14). GND – Ground.

15).USB_D- – USB Data Minus (for USB communication if supported;

normally unused).

16). NC – Not connected.

17). NC – Not connected.

18). NC – Not connected.

19). NC – Not connected.

20). NC – Not connected.

21). GND – Ground.

22). GND – Ground.

23). PIO0 – Programmable Input/Output pin 0.

24). PIO1 – Programmable Input/Output pin 1.

25). PIO2 – Programmable Input/Output pin 2.

26). PIO3 – Programmable Input/Output pin 3.

27). PIO4 – Programmable Input/Output pin 4.

28). PIO5 – Programmable Input/Output pin 5.

29). PIO6 – Programmable Input/Output pin 6.

30). PIO7 – Programmable Input/Output pin 7.

67

31). PIO8 – Programmable Input/Output pin 8.

32). PIO9 – Programmable Input/Output pin 9.

33). PIO10 – Programmable Input/Output pin 10.

34). PIO11 – Programmable Input/Output pin 11.

Working Principle of a Bluetooth Module:

The Bluetooth module usually works by:

1. Initialization:

o When powered, the module becomes visible (discoverable) to

nearby Bluetooth devices.

2. Pairing:

o A secure connection is established with another device using a

PIN/password.

3. Data Communication:

o Most Bluetooth modules use UART (Serial Communication).

o The microcontroller communicates with the module using TX

(transmit) and RX (receive) pins.

o The Bluetooth module wirelessly transmits this serial data to

another paired device (phone, computer, etc.).

4. Modes:

o Master Mode: Initiates connection.

o Slave Mode: Waits for a connection.

Types of Bluetooth Modules:

1).HC-05 Bluetooth Module (Classic Bluetooth):

The HC-05 is a Bluetooth-to-Serial-Bridge module that allows wireless

communications between two microcontrollers or between a microcontroller

68

and a smartphone, laptop, or desktop PC with Bluetooth capability. It’s perfect

for directly replacing a wired asynchronous serial interface!

Key Features:

 Supports both Master and Slave modes.

 Works on Bluetooth V2.0 + EDR.

 Easy to switch between modes using AT commands.

 Default PIN: 1234 or 0000.

 Range: ~10 meters.

Use Case:

 Two microcontrollers talking to each other wirelessly.

 Mobile app control projects.

Specifications:

 Operating Voltage: 3.3V (but often has onboard 5V tolerance)

 Communication: UART (serial)

 Baud Rate: 9600 bps (default, can change)

 Frequency: 2.4 GHz ISM Band

 Current: 30-50 mA during transmission

69

2). HC-06 Bluetooth Module (Classic Bluetooth):

HM-06 is a Bluetooth module designed for establishing short range wireless

data communication between two microcontrollers or systems. The module

works on Bluetooth 2.0 communication protocol and it can only act as a

slave device. This is cheapest method for wireless data transmission and

more flexible compared to other methods and it even can transmit files at

speed up to 2.1Mb/s.

HC-06 uses frequency hopping spread spectrum technique (FHSS) to avoid

interference with other devices and to have full duplex transmission. The

device works on the frequency range from 2.402 GHz to 2.480GHz.

Key Features:

 Supports only Slave mode.

 Slightly cheaper and simpler than HC-05.

 No Master-Slave switch; always ready to be connected.

 Default PIN: 1234 or 0000.

Use Case:

 Ideal for simple mobile-to-device communication.

 Arduino controlling small home automation setups.

70

Specifications:

 Voltage: 3.3V – 5V

 Serial Interface: UART

 Range: 10 meters

 Frequency: 2.4 GHz ISM Band

3). HM-10 Bluetooth Module (BLE – Bluetooth Low Energy):

The HM-10 Bluetooth module is a low-power Bluetooth 4.0 (BLE) module

based on the TI CC2541 chip. It's widely used in wireless communication

projects and supports communication with both iOS and Android devices. The

HM-10 operates over UART and can be easily integrated with microcontrollers

like Arduino. It's popular due to its low power consumption, long range, and

compatibility with BLE devices.

Key Features:

 Supports Bluetooth 4.0 / BLE standard.

 Can act as Master or Slave.

 Very low power consumption (ideal for battery-powered devices).

 Used for communicating with modern smartphones (Android, iPhone).

71

Use Case:

 IoT applications (low energy, sensors).

 Wearables (fitness trackers, smartwatches).

Specifications:

 Voltage: 3.3V – 6V

 Communication: UART (serial)

 Range: 50 meters (depending on version)

 Frequency: 2.4 GHz ISM Band

 Current: Ultra-low (few mA in operation, microamps in sleep)

4). HC-08 Bluetooth Module (BLE – Bluetooth Low Energy):

The HC-08 module allows to transmit and receive data through the serial port

of the micro controller wirelessly. It belongs version 4.0 of Bluetooth devices,

which has the same characteristics as its predecessors, but with the

difference that this device is low energy consumption. It also adds the feature

of being compatible with Apple brand products.

Key Features:

 Works only in Slave mode.

 Simpler BLE compared to HM-10.

 Compatible with iPhone and Android devices.

72

Use Case:

 Simple BLE communication with mobile apps.

 Sensor data sending (e.g., temperature, humidity).

Specifications:

 Voltage: 3.3V – 5V

 Communication: UART

 Range: 80 meters (open space)

 Current: Very low power

5). ESP32 Bluetooth (Integrated Classic + BLE):

ESP32 has on-chip Bluetooth and BLE (Bluetooth Low Energy). In this guide,

we will see the Bluetooth part.

ESP32 Bluetooth is also referred as classic Bluetooth.

Using Bluetooth is very much simple on ESP32 with BluetoothSerial Library

with Arduino IDE.

Key Features:

 ESP32 is a microcontroller with WiFi + Bluetooth both built-in.

 Supports both Classic Bluetooth and BLE.

73

 High processing power: dual-core processor.

 Can run Arduino programs directly.

Use Case:

 Smart IoT devices (sending data over WiFi and Bluetooth).

 Advanced projects (Voice control, Real-time monitoring).

Specifications:

 Voltage: 3.3V

 Range: 10-100 meters

 Connectivity: WiFi 802.11 b/g/n, Bluetooth v4.2

 Powerful: Up to 520 KB RAM, integrated sensors.

General Specifications of Bluetooth Modules

Feature Range

Operating Voltage 3.3V – 5V

Communication UART (Serial TX, RX)

Frequency 2.4 GHz ISM Band

Data Rate 9600 bps (default), up to 115200 bps

Range 10 meters (typical)

Power Consumption Low (especially BLE modules)

Applications of Bluetooth Modules

Home Automation

 Controlling lights, fans, locks using smartphone apps.

74

Wireless Data Logging

 Sending temperature, humidity, and other sensor data to a mobile app.

Wireless Robotics

 Controlling robots, drones, and cars wirelessly.

Health Monitoring

 Wearable health devices like fitness bands (BLE modules).

Industrial Automation

 Machine-to-machine wireless communication in factories.

IoT (Internet of Things)

 Bluetooth-enabled smart devices like alarms, weather stations, etc.

Smart Home

 Appliances like smart thermostats, doorbells, and speakers.

Gaming Devices

 Wireless controllers, VR headsets.

Why we use HM-10 Bluetooth Module Over HC-05 Module:

1. Power Consumption

 The HM-10 BLE module consumes much less power than the HC-05.

 BLE is specially designed for devices that operate on small batteries for

months or even years.

75

 HC-05, using Classic Bluetooth, consumes more current because it

maintains an active connection constantly (which drains the battery

faster).

2. Compatibility with Smartphones (especially iPhones)

 BLE (used by HM-10) is natively supported by both Android and iOS

(iPhone).

 Classic Bluetooth (used by HC-05) works well with Android phones but

not easily with iPhones because Apple restricts Classic Bluetooth in

many apps.

 If you want to connect your Arduino to an iPhone app, you must use

BLE (HM-10 or similar).

3. Data Transmission Method

 HC-05 is designed for continuous streaming of large data (like audio,

music).

 HM-10 is designed for short, quick bursts of small data packets (like

sending a temperature reading or a button press).

 BLE reduces energy usage by sending small data, then immediately

disconnecting.

4. Range and Signal Strength (RSSI)

 RSSI stands for Received Signal Strength Indicator.

 It tells how strong the Bluetooth signal is between devices.

 Both HC-05 and HM-10 provide an RSSI value, but:

o In HM-10 (BLE), RSSI is commonly used to estimate distance or

signal quality because BLE applications often involve dynamic

devices (moving wearables, trackers).

 Higher RSSI (closer to 0 dBm) = Stronger signal.

76

 Lower RSSI (more negative) = Weaker signal.

Typical RSSI examples:

 -40 dBm → Very strong signal (close)

 -70 dBm → Medium signal (some distance)

 -90 dBm → Weak signal (far away)

BLE devices like HM-10 often use RSSI for proximity detection (example:

smart keys, asset tracking).

5. Speed and Data Rate

 HC-05 can transmit data faster because it supports continuous

streaming.

 HM-10 has a lower transmission rate because BLE is optimized for

small, quick messages, not streaming.

But for most Arduino projects like:

 Sending sensor values

 Turning motors on/off

 Controlling LEDs

You don't need high data rates — so HM-10 is enough and better for

power-saving.

77

Circuit Design

Circuit Explaination:

This is a project based on Arduino Mega 2560, combining multiple devices:

 Two Servo Motors (to open/close gates — Red and Green)

 DC Motors (controlled through Motor Driver Module)

 Bluetooth Module (for wireless control)

 Color Sensor (to detect object color)

 LCD Display with I2C Adapter (to show messages)

 Breadboard (for power and ground distribution)

1. Arduino Mega 2560

 Main microcontroller board that connects and controls all modules.

78

 It has more input/output pins compared to Arduino Uno, suitable for

this big project.

2. Servo Motors (Red Gate and Green Gate)

 Servo 1 and Servo 2 are small TowerPro SG90 servos.

 Connected to digital pins of the Arduino (through Breadboard for

power sharing).

 They are probably used to open and close gates based on some

conditions (like detected color or Bluetooth command).

3. DC Motors and L298N Motor Driver Module

 Two 12V DC motors are controlled by an L298N Dual Motor Driver.

 The motor driver acts as a bridge — it receives control signals from

Arduino and switches higher power (12V) to the DC motors.

 Motors could be for moving a platform, conveyor, or robot wheels.

4. Bluetooth Module (HM-10)

 Connected to TX/RX (serial communication) of Arduino.

 Allows wireless communication with a smartphone or computer.

 You can send commands through an app to:

o Open/close gates (servo control)

o Start/stop motors

o Display something on the LCD

 It’s labeled "Bluetooth Module" in the diagram.

5. Color Sensor (TCS3200)

 This sensor detects the color of objects.

 It sends color information to Arduino.

 Arduino could then decide actions:

o For example, if color = RED, open Red Gate (Servo 1).

79

o If color = GREEN, open Green Gate (Servo 2).

 TCS3200 color sensors give frequency output proportional to detected

color.

6. LCD Display with I2C Adapter

 A 16x2 LCD is used for showing messages or statuses.

 It uses an I2C adapter (backpack module) — which reduces wiring

from 12 pins to just 4 pins (VCC, GND, SDA, SCL).

 Connected to Arduino's SDA/SCL pins (A4, A5 on Uno — different on

Mega).

7. Breadboard

 Breadboard is used for power and ground distribution.

 5V and GND from Arduino are distributed to Servo motors and other

components through this.

ARDIUNO CODE:

#include <SoftwareSerial.h>

SoftwareSerial BT05(2, 3); // TX = 3, RX = 2 (opposite of Receiver)

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

#include <Servo.h>

// LCD Setup (I2C Address 0x27, 16x2 Display)

LiquidCrystal_I2C lcd(0x27, 16, 2);

// Color Sensor Pins

#define S0 4

#define S1 5

80

#define S2 6

#define S3 7

#define SENSOR_OUT 8

// L298N Motor Driver Pins (Motor A - Conveyor)

#define IN1 9

#define IN2 10

#define ENA 11 // PWM for speed control

// L298N Motor Driver Pins (Motor B - Extra DC Motor after Green)

#define IN3 24

#define IN4 25

#define ENB 12 // PWM

// Servo Motor Pins

#define SERVO_RED_PIN 22

#define SERVO_GREEN_PIN 23

#define relay_pin 26

// Servo Objects

Servo servoRed;

Servo servoGreen;

// Counters for Boxes

int redCount = 0;

int greenCount = 0;

int blueCount = 0;

81

String previousColor = "None"; // Previous color tracking

void setup() {

 Serial.begin(9600);

 BT05.begin(9600); // Bluetooth module

 Serial.println("Sender Ready");

 // Initialize LCD

 lcd.init();

 lcd.backlight();

 // Initialize Servo Motors

 servoRed.attach(SERVO_RED_PIN);

 servoGreen.attach(SERVO_GREEN_PIN);

 servoRed.write(0);

 servoGreen.write(0);

 pinMode(26, OUTPUT);

 digitalWrite(26, HIGH);

 // Set Color Sensor Pins

 pinMode(S0, OUTPUT);

 pinMode(S1, OUTPUT);

 pinMode(S2, OUTPUT);

 pinMode(S3, OUTPUT);

 pinMode(SENSOR_OUT, INPUT);

 // Motor A Pins

82

 pinMode(IN1, OUTPUT);

 pinMode(IN2, OUTPUT);

 pinMode(ENA, OUTPUT);

 // Motor B Pins

 pinMode(IN3, OUTPUT);

 pinMode(IN4, OUTPUT);

 pinMode(ENB, OUTPUT);

 // Set Frequency Scaling to 20%

 digitalWrite(S0, HIGH);

 digitalWrite(S1, LOW);

 Serial.println("System Ready...");

 lcd.setCursor(0, 0);

 lcd.print("System Ready...");

}

void conveyorStart() {

 digitalWrite(IN1, HIGH);

 digitalWrite(IN2, LOW);

 analogWrite(ENA, 200);

}

void conveyorStop() {

 digitalWrite(IN1, LOW);

 digitalWrite(IN2, LOW);

83

 analogWrite(ENA, 0);

}

void motorBStart() {

 digitalWrite(IN3, HIGH);

 digitalWrite(IN4, LOW);

 analogWrite(ENB, 200);

}

void motorBStop() {

 digitalWrite(IN3, LOW);

 digitalWrite(IN4, LOW);

 analogWrite(ENB, 0);

}

String detectColor() {

 int redFrequency, greenFrequency, blueFrequency;

 delay(300);

 digitalWrite(S2, LOW); digitalWrite(S3, LOW);

 redFrequency = pulseIn(SENSOR_OUT, LOW);

 delay(50);

 digitalWrite(S2, HIGH); digitalWrite(S3, HIGH);

 greenFrequency = pulseIn(SENSOR_OUT, LOW);

 delay(50);

84

 digitalWrite(S2, LOW); digitalWrite(S3, HIGH);

 blueFrequency = pulseIn(SENSOR_OUT, LOW);

 delay(50);

 Serial.print("Red: "); Serial.print(redFrequency);

 Serial.print(" Green: "); Serial.print(greenFrequency);

 Serial.print(" Blue: "); Serial.println(blueFrequency);

 if (redFrequency < 100 && greenFrequency < 100 && blueFrequency <

100) {

 Serial.println("No Object Detected");

 previousColor = "None";

 return "None";

 }

 if (redFrequency < greenFrequency && redFrequency < blueFrequency) {

 return "Red";

 } else if (greenFrequency < redFrequency && greenFrequency <

blueFrequency) {

 return "Green";

 } else {

 return "Blue";

 }

}

85

void openGate(Servo &servo) {

 servo.write(90); // Open gate

 delay(3000); // Shorter time for box to pass

 servo.write(0); // Close gate

}

void loop() {

 String color = detectColor();

 if (color == "None") {

 conveyorStop();

 previousColor = "None";

 return;

 }

 if (color == previousColor) {

 conveyorStart();

 if (color == "Red") {

 Serial.println("Red Box Confirmed");

 openGate(servoRed);

 redCount++;

 }

 else if (color == "Green") {

 Serial.println("Green Box Confirmed");

 openGate(servoGreen);

86

 greenCount++;

 motorBStart();

 Serial.println("Extra Motor Started");

 delay(5000); // Run for 5 seconds

 motorBStop();

 Serial.println("Extra Motor Stopped");

 }

 else {

 Serial.println("Blue Box Confirmed");

 blueCount++;

 }

 previousColor = "None";

 }

 else {

 previousColor = color;

 Serial.print("Detected (waiting): "); Serial.println(color);

 delay(100);

 return;

 }

 // LCD Update

87

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Red:"); lcd.print(redCount);

 lcd.setCursor(8, 0);

 lcd.print("Green:"); lcd.print(greenCount);

 lcd.setCursor(0, 1);

 lcd.print("Blue:"); lcd.print(blueCount);

 // Show current detected color short form

 lcd.setCursor(13, 1);

 lcd.print("Clr:");

 lcd.print(color[0]); // Show first letter: R, G, B

 if (redCount >= 1 && greenCount >= 1) {

 digitalWrite(26, LOW);

 BT05.println("Hello from sender");

 Serial.println("Sent message to receiver");

 delay(7000);

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Reset Done");

 Serial.println("Auto Reset Counts!");

 redCount = 0;

 greenCount = 0;

88

 blueCount = 0;

 delay(2000);

 lcd.clear();

 }

 delay(2000);

}

TESTING AND TROUBLESHOOTING OF CIRCUIT

1. Power Supply Check:

 Check Power to Arduino MEGA: Ensure the Arduino is powered

either via USB or external 9V/12V source.

 Check Power to Components: Use a multimeter to confirm that:

 The breadboard power rails are properly powered (typically 5V and

GND).

 The motor driver is getting 12V supply from its input.

 Servo motors are connected to 5V and GND properly.

2. Component Connectivity Check:

A).Wiring Inspection:

 Visually confirm each connection to pins as per the diagram.

 Verify servo wires (signal, VCC, GND) are not reversed.

 Ensure proper orientation of modules like Bluetooth and color sensor.

3. Test Individual Components:

A).Servo Motors:

 Use a basic servo sweep test sketch to see if each one moves correctly.

89

 If not moving, check signal wire continuity and power level.

B).DC Motors & Motor Driver:

 Upload a basic sketch to rotate motors forward and backward.

 Check that the motor driver inputs (IN1, IN2, etc.) are correctly linked

to the Arduino pins.

C).Bluetooth Module:

 Connect to it via a mobile app (like Arduino Bluetooth Controller).

 Send simple commands and check for proper TX-RX communication.

 D).Color Sensor (TCS3200 or similar):

 Run a test sketch that prints out RGB values or frequency.

 Confirm that the S0–S4 and OUT pins are connected correctly.

E).LCD Display:

 Run the Hello World sketch from the LiquidCrystal library.

 Adjust the potentiometer to set contrast if the display is blank.

4. Software Debugging:

 Use the Serial Monitor:

 Add Serial.println() statements in key parts of your code.

 Monitor sensor values, control flow, and component states.

A).Check Libraries:

 Make sure all required libraries (e.g., Servo, LiquidCrystal, etc.) are

installed.

90

REFERENCES

1).Electronics Circuit

2).Google Websites:

 https://forum.arduino.cc/t/controlling-a-12v-motor-2-servo-motors-and-2-

ir-sensors-with-an-arduino/548239

 https://forum.arduino.cc/t/conveyor-belt-arduino/191891

 https://forum.arduino.cc/t/please-help-with-my-conveyor-belt-color-

sensor-project-tcs-3200/587984

3).Youtube

 https://youtu.be/8qOU7Uejr74?si=0kffMR4xImtNngmM

 https://youtu.be/9_DpSb6gBFY?si=kxWfH0LYxm5LYFJ7

4).Chatgpt.

5). quartz components

https://forum.arduino.cc/t/controlling-a-12v-motor-2-servo-motors-and-2-ir-sensors-with-an-arduino/548239
https://forum.arduino.cc/t/controlling-a-12v-motor-2-servo-motors-and-2-ir-sensors-with-an-arduino/548239
https://forum.arduino.cc/t/conveyor-belt-arduino/191891
https://forum.arduino.cc/t/please-help-with-my-conveyor-belt-color-sensor-project-tcs-3200/587984
https://forum.arduino.cc/t/please-help-with-my-conveyor-belt-color-sensor-project-tcs-3200/587984
https://youtu.be/8qOU7Uejr74?si=0kffMR4xImtNngmM
https://youtu.be/9_DpSb6gBFY?si=kxWfH0LYxm5LYFJ7

91

ESTIMATION

S.No Componnent Name Quantity Price

1. 12V Battery 2(6v Each) 800

2. Arduino Mega 2560 1 1860

3. 12V DC gear motor 2 466

4. Color Sensor 1 500

5. L298N Motor Driver Module 1 285

6. Motor Speed Controller 1 403

7. Servo Motors 2 314

8. Glue Gun sticks 2 60

9. Screws 40 40

10. Fevibond 1 50

11. Jumper Wire 60 200

12. I2C Module 1 177

13. LCD Display 1 College inventery

14. Bluetooth Module(HM-10) 4 964

15. Tape 2 120

Total=6240

